Algebra Review #40 SHOW HOW YOU SOLVED EACH PROBLEM

1.

Solve each:	
(3x + 10)(2x - 2)	(3x - 2)(2x - 1)

2. Identify each expression that is a factor of this polynomial.

 $4x^2 - 2x - 2$

2x+1 2 $x-1$ $2x-1$ $4x-1$	-1
----------------------------	----

3.

What is the value of $\frac{3}{x+2}$ when x = 4?

Your answer must be in the form of a fraction in simplest form.

NAME _

4. Travis would like to buy some toys to donate to charity. He plans to buy 9 dolls at *d* dollars each, 2 toy cars at *c* dollars each, and 3 train sets at *t* dollars each. Which expression represents the total cost, in dollars, or these items that Travis wants to buy?

A
$$9c + 2t + 3d$$

B
$$9d - 2c - 3t$$

c
$$9d + 2c + 3t$$

D
$$9c - 2t - 3d$$

5. When n > 0, which expression is equivalent to $\sqrt{42n^9}$ in simplest form?

A $n^{3}\sqrt{42}$

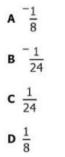
B $n^{4}\sqrt{42n}$

C
$$6n^3\sqrt{7}$$

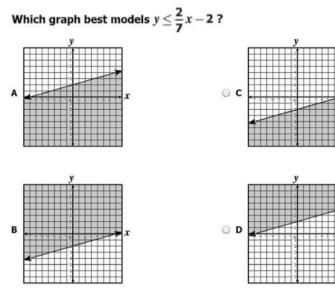
D $6n^4\sqrt{7n}$

6. Look at the system of equations.

> y = -x + 27x + 4y = -1


What is the value of x for the solution to this system of equations?

A −5 B −3


C 3

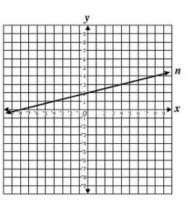
D 5

7. What is the slope of the line represented by $\frac{1}{8}x + 3y = 3$?

8.

9.

Which inequality represents all the solutions of 9(4x-8) < 4(6x+9)?


A x < -3

B x > -3
C x < 9

D x > 9

10.

The graph of line *n* is shown.

Which number is closest in value to the slope of line n?

A -4

B $-\frac{1}{4}$

c $\frac{1}{4}$

D 4