Algebra 1 - Unit 8 Guide
Exponent Rules (Laws of Exponents)

Properties	General Form	Application	Example
Product Rule Same base add exponents	$a^{m} a^{n}$	a^{m+n}	$x^{5} x^{3}=x^{5+3}=x^{8}$
Quotient Rule Same base subtract exponents	a^{m}	a^{n}	a^{m-n}
Power Rule I Power raised to a power multiply exponents.	$\left(a^{m}\right)^{n}$	$a^{m n}$	$\frac{x^{9}}{x^{5}}=x^{9-5}=x^{4}$
Power Rule II Product to power distribute to each base	$(a b)^{m}$	$a^{m} a^{n}$	$\left(x^{3}\right)^{4}=x^{3 \cdot 4}=x^{12}$
Negative Exponent I Flip and change sign to positive	a^{-m}	$\frac{1}{a^{m}}$	$\left(4 x^{3}\right)^{2}=4^{2} x^{3 \cdot 2}=16 x^{6}$
Negative Exponent II Flip and change sign to positive	$\frac{1}{a^{-m}}$	a^{0}	a^{m}
Zero Exponent Anything to the zero power $(e x c e p t ~ 0) ~ i s ~ o n e ~$	$a^{0}=1$	$x^{-3}=\frac{1}{x^{3}}$	

- It is important to note that none of these applications can occur if the bases are not the same.

For example, $\frac{x^{5}}{y^{3}}$ cannot be simplified.

Example:

- $\frac{\left(2^{3} y^{2}\right)^{5}}{2^{10} y^{16}}$
\rightarrow Power Rule
- $\frac{2^{3 \cdot 5} y^{2 \cdot 5}}{2^{10} y^{16}}$
- $\frac{2^{15} y^{10}}{2^{10} y^{16}}$
\rightarrow Quotient Rule
- $2^{15-10} y^{10-16}$
- $2^{5} y^{-6}$
\rightarrow Negative Exponent
- $\frac{32}{y^{6}}$

Example:

- $\left(\frac{p^{-4} q}{r^{-3}}\right)^{-3} \quad \rightarrow$ Power Rule
- $\frac{p^{-4 \cdot-3} q^{1-3}}{r^{-3 \cdot-3}}$ Note: When a base does not have an exponent there is really a one as the power. So that, q is understood as q^{1}
- $\frac{p^{12} q^{-3}}{r^{9}} \rightarrow$ Negative Exponents
- $\frac{p^{12}}{q^{3} r^{9}}$

Algebra 1 - Unit 8 Study Packet

Exponent Rules (Laws of Exponents)

Skill \#1 - Powers of Zero

1. Simplify:

$$
(6 x)^{0}=
$$

3. Simplify:

$$
\left[4\left(x^{2}\right)^{4}\right]^{0}=
$$

2. Simplify:

$$
6 x^{0}=
$$

4. Simplify:

$$
4\left[\left(x^{2}\right)^{4}\right]^{0}=
$$

Skill \#1 \quad I can evaluate expressions involving a power of zero.
Skill \#2 - Product Rule (Multiplying with Like Bases)
5. Write the following expression in simplified form:

$$
\left(8 x^{6}\right)\left(x^{3}\right)
$$

7. Write the following expression in simplified form:

$$
\left(3 x^{8} y\right)\left(-10 x y^{10}\right)
$$

6. Write the following expression in simplified form: $\left(-3 y^{2} z^{2}\right)\left(y^{4} z^{5}\right)$
7. Write the following expression in simplified form: $\left(7 a^{3} b^{5}\right)\left(-9 a^{6} b^{3}\right)$

Skill \#2 \quad I can evaluate expressions involving multiplication of exponents with the same base. \square Need more practice (IXL - V.4)
Skill \#3 - Quotient Rule (Dividing with Like Bases)
9. Write the following expression in simplified form:

$$
\frac{x^{3}}{x}
$$

10. Write the following expression in simplified form:

$$
\frac{4 g^{5} h^{8}}{2 g^{2} h^{2}}
$$

11. Identify each true statement:

$\frac{12 x^{5} y^{8}}{4 x y^{3}}=3 x^{4} y^{5}$
$\frac{14 x^{4} y^{10}}{2 x^{2} y^{4}}=12 x^{2} y^{6}$
$\frac{15 x^{7} y}{3 x^{5} y}=5 x^{2}$
$\frac{20 x^{4} y^{8}}{10 x^{2} y^{4}}=2 x^{2} y^{2}$

Skill \#3 \quad I can evaluate expressions involving division of exponents with the same base. \square Need more practice (IXL - V.5)

Skill \#4 - Power Rule 1 (Raising a Power to a Power)
12.

$$
\left(y^{3}\right)^{9}
$$

13.

$\left(3 x^{2} y^{3}\right)^{3}$
14. Identify each true statement:

$\left(5 x^{3} y^{2}\right)^{4}=625 x^{12} y^{8}$
$\left(5 x y^{2}\right)^{2}=25 x^{2} y^{4}$
$\left(2 x^{3} y^{2}\right)^{2}=4 x^{5} y^{4}$
$\left(2 x^{3} y^{2}\right)^{3}=6 x^{9} y^{6}$

Skill \#3 \quad I can evaluate expressions involving raising an exponent to another power. \square Need more practice (IXL - V.7)
Skill \#5 - Power Rule 2 (Raising a Product/Quotient to a Power)
15. Simplify:

$$
\left(4 x^{7} y^{5}\right)^{4}
$$

17. Simplify:

$$
\left(\frac{3 a b^{2}}{c^{3}}\right)^{2}
$$

16. Simplify:

$$
\left(\frac{x^{4}}{y^{5}}\right)^{3}
$$

18. Simplify:

$$
\left(\frac{2 x^{3}}{6 y^{5}}\right)^{3}
$$

Skill \#3 \quad I can evaluate expressions involving raising a product/quotient to a power. \square Need more practice (IXL - V.7)

Skill \#6 - Negative Exponent Rules

19. Simplify:

$$
x^{-4}
$$

21. Simplify:

$$
\frac{b^{-6}}{a^{-7}}
$$

20. Simplify:

$$
\frac{1}{b^{-5}}
$$

22. Simplify:

$$
\frac{9 x^{-4}}{3 y^{2}}
$$

Skill \#3 \quad I can evaluate expressions involving negative exponents. \square Need more practice (IXL - V.3)

Skill \#7 - Combination of Exponent Rules
23. What is equivalent to:

$$
\frac{a b\left(15 a^{3} b^{2} c\right)}{25 b^{5} c^{2}}
$$

25. What expression is the simplest form of:
$\left(6 x^{4}\right)^{-1}$
26. Which is a simplified form of the following expression using only positive exponents?

$$
\left(\frac{x^{3}}{y^{4}}\right)^{-3}
$$

29. Simplify:

$$
\frac{6\left(x^{4}\right)^{2}}{x^{5}}
$$

24. What expression is the simplest form of:

$$
\left(4 x^{3} y\right)\left(5 x^{5} y^{2}\right)^{2}
$$

26. What is a simplified form of the following expression where $\mathrm{a} \neq 0$ and $\mathrm{b} \neq 0$?

$$
\frac{\left(4 a b^{3}\right)^{2}}{32 a^{7} b}
$$

28. Which is a simplified form of the following expression using only positive exponents?
$(5 x)^{-3}\left(25 x^{-8}\right)$
29. Simplify:

$$
\frac{\left(8 x^{3}\right)^{3}}{20 x^{10}}
$$

Skill \#3 \quad I can evaluate an expression involving a combination of exponent rules. \square Need more practice (IXL - V.6)

